

MATHEMATICS-II

	QUESTION BANK	2018
<u>UNIT –II</u>		
1. a) Solve $(D^2 + 2D + 1)y = 0$		[2M]
b) P.T $\left[J_{\frac{1}{2}}(x)\right]^2 + \left[J_{-\frac{1}{2}}(x)\right]^2 = \frac{2}{\pi x}$		[2M]
c) Find Particular Integral of $(D^2 + 6D + 9)y = 2e^{-3x}$		[2M]
d) Write the formula for Bessel's function $J_n(x)$.		[2M]
e) Find the Legendre's Polynomials $P_0(x)$ and $P_1(x)$		[2M]
 2. a) Solve ((D² + 4)y = e^x + sin 2x. b) Solve (D² + 1)y = cos x by method of variation of parameters. 		[5M] [5M]
3. a) Solve $(D^2 - 5D + 6)y = xe^{4x}$.		[5M]
b) Solve $x^2 \frac{d^2 y}{dx^2} - 3x \frac{dy}{dx} + 4y = (1+x)^2$		[5M]
4. a) Solve $(D^3 + 2D^2 + D)y = x^3$. $d^2y = 1 dy = 12 \log x$		[5M]
b) Solve $\frac{d^2y}{dx^2} + \frac{1}{x}\frac{dy}{dx} = \frac{1210gx}{x^2}$		[5M]
5. a) Solve $(D^2 + a^2)y = \tan ax$ by method of variation of parameters.		[5M]
b) Solve $x^2 \frac{d^2 y}{dx^2} - x \frac{dy}{dx} + y = \log x$		[5M]
6. a) Solve by method of variation of parameters $(D^2 - 2D)y = e^x \sin x$.		[5M]
b) Solve $x^2 \frac{d^2 y}{dx^2} - 2x \frac{dy}{dx} - 4y = x^4$.		[5M]
7. Solve in series the equation $\frac{d^2 y}{dx^2} + xy = 0$		[10M]
8.a)Express the following in terms of Legendre's polynomials $f(x) = x^3$ -	$-2x^2-x-3$.	[5M]
b) Prove that $\frac{d}{dx} \left[x^n J_n(x) \right] = x^n J_{n-1}(x)$		[5M]
9.a) Using Rodrigue's formula P.T $\int_{-1}^{1} x^m P_n(x) dx = 0$ if $m < n$		[5M]
b) Express $J_4(x)$ in terms of $J_0(x)$ & $J_1(x)$		[5M]
10. Prove that $J_{\frac{5}{2}}(x) = \frac{3}{x} \left[\sqrt{\frac{2}{\pi x}} \left(\frac{\sin x}{x} - \cos x \right) \right] - \sqrt{\frac{2}{\pi x}} \sin x$		[10M]
MATHEMATICS-II	I	Οασε 1

QUESTION BANK	2018	
<u>UNIT –III</u>		
1. a)Evaluate $\int_0^1 \int_0^x e^{x+y} dx dy$.	[2M]	
b) Evaluate $\int_{0}^{1} \int_{0}^{1} \frac{dx dy}{\sqrt{1 - x^2} \sqrt{1 - y^2}}$	[2M]	
c) Change the order of integration in $\int_{0}^{1} \int_{0}^{2\sqrt{x}} f(x, y) dy dx$.	[2M]	
d) Evaluate $\int_{0}^{\pi} \int_{0}^{\sin\theta} r dr d\theta$	[2M]	
e) Evaluate $\int_{0}^{1} \int_{0}^{1} \int_{0}^{1} e^{x+y+z} dx dy dz.$	[2M]	
2. a) Evaluate $\int_0^5 \int_0^{x^2} x(x^2 + y^2) dx dy$ b)Evaluate $\iint (x^2 + y^2) dx dy$ in the positive quadrant for which $x + y \le 1$.	[5M] [5M]	
3. a) Find the area of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$.	[5M]	
b) Evaluate $\int_{0}^{\pi} \int_{0}^{a(1+\cos\theta)} r dr d\theta$	[5M]	
4. a) Evaluate $\int_{0}^{a} \int_{0}^{\sqrt{a^2 - y^2}} (x^2 + y^2) dy dx$	[5M]	
b) Evaluate $\int_{-\infty}^{\infty} e^{-(x^2+y^2)} dx dy$ by converting to polar coordinates.	[5M]	
5. a) Show that the area between the parabolas $y^2 = 4ax$ and $x^2 = 4ay$ is $\frac{16}{3}a^2$.	[5M]	
b) Evaluate the integral by transforming into polar coordinates $\int_{0}^{a} \int_{0}^{\sqrt{a^{2}-x^{2}}} y\sqrt{x^{2}+y^{2}} dx dy.$	[5M]	
6. a) Calculate $\iint r^3 dr d\theta$ over the area included between the circles $r = 2sin\theta$ and $r = 4sin\theta$.[5M]		
b) Evaluate the integral by changing the order of integration $\int_{0}^{\infty} \int_{0}^{\infty} \frac{e^{-y}}{y} dy dx$.	[5M]	
7. Change the order of integration in $I = \int_{0}^{1} \int_{x^2}^{2-x} (xy) dy dx$ and hence evaluate the same. [10]	M]	
8. a) By changing order of integration, evaluate $\int_0^{4a} \int_{\frac{x^2}{4a}}^{2\sqrt{ax}} dy dx$.	[5M]	
b) Evaluate $\int_{-1}^{1} \int_{0}^{z} \int_{x-z}^{x+z} (x+y+z) dx dy dz$	[5M]	
9. Evaluate $\int_{0}^{a} \int_{0}^{\sqrt{1-x^{2}}} \int_{0}^{\sqrt{1-x^{2}-y^{2}}} \frac{dxdydz}{\sqrt{1-x^{2}-y^{2}-z^{2}}}.$	[10M]	
10. a) Calculate the volume of the solid bounded by the planes x = 0, y = 0, x + y + z = a and z = 0	[5M]	
b) Evaluate the triple integral $\iiint xy^2 z dx dy dz$ taken through the positive octant of the	[~11]	
sphere $x^- + y^- + z^- = a^-$.	[JM]	
	i age 1	

	QUESTION BANK	2018
	UNIT –IV <u>COMPLEX ANALYSIS- DIFFERENTATION</u>	
1.	 a) Write Cauchy's Riemann equations in Cartesian form. b) Write the formula for Harmonic function. c) Show that f(z) = z² is analytic function. d) Define Bilinear Transformation. e) Write Cauchy's Riemann equations in polar form. 	[10M]
2.	a) Show that $u = \frac{1}{2}log(x^2 + y^2)$ is Harmonic.	[5M]
	b) If $W = f(z)$ is analytic function then prove that $\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right) \operatorname{Re} alf(z) ^2 = 2 f^1(z) ^2$.	[5M]
3.	a) Find 'a' and 'b' if $f(z) = (x^2 - 2xy + ay^2) + i(bx^2 - y^2 + 2xy)$ is analytic. Hence find $f(z)$ interms of z.	[5M]
	b) Find the analytic function whose imaginary part is $e^{x}(x \sin y + y \cos y)$.	[5M]
4.	a) Determine p such that the function $f(z) = \frac{1}{2} \log(x^2 + y^2) + i \tan^{-1}\left(\frac{px}{y}\right)$.	[5M]
	b) Find all the values of k, such that $f(x) = e^x (\cos ky + i \sin ky)$.	[5M]
5.	a) If $f(z)=u+iv$ is an analytic function of z and if $u+v=e^{x}(\cos y-\sin y)$, Find $f(z)$ in terms of z.	[5M]
	b) Find an analytic function whose real part is $e^{-x}(x \sin y - y \cos y)$.	[5M]
6.	a) Show that $(z) = z + 2\overline{z}$ is not analytic anywhere in the complex plane.	[5M]
	b) Show that $\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} = 4 \frac{\partial^2}{\partial z \partial \overline{z}}$.	[5M]
7.	a) Find the bilinear transformation which maps the point's(∞ , <i>i</i> ,0) <i>i</i> nto the points(0, <i>i</i> , ∞). b) Find the image of the triangular region with vertices at (0,0)(1,0)(0,1) under the	[5M]
	transformation $w = (1 - i)z + 3$.	[5M]
8.	a) Find the image of the infinite strip $0 < y < \frac{1}{2}$ under the transformation $w = \frac{1}{z}$.	[5M]
	b) Show that the function $w = \frac{4}{z}$ transforms the straight line $x = c$ in the z-plane, into a	
	circle in the $w - plane$.	[5M]
9.	a) Find the bilinear transformation which maps the points $(\infty, i, 0)$ in to the points	[7]) (1)
	 (-1, -1, 1) in w-plane. b) Find the bilinear transformation that maps the point's(1, <i>i</i>, -1) <i>i</i>n to the points (2, <i>i</i>, -2) in w-plane.[5M] 	[5M]
10	. a) The image of infinite strip bounded by $x=0 \& x=\frac{\pi}{4}$ under the transformation $w = \cos z$	[5M]
int	b) Prove that the transformation $w = \sin z$ maps the families of lines $x = y = constant$ o two families of confocalcentral conics. [5M]	[~~'*]

MATHEMATICS-II

QUESTION BANK	2018	
<u>UNIT –V</u>		
 a) State Cauchy's theorem b) State Cauchy's integral formula [2M] c) State Cauchy's maidue theorem 	[2M]	
d) Find the poles of the function $f(z) = \frac{z}{\cos z}$	[2M]	
e) Find the residue of $f(z) = \frac{e^z}{z^5}$	[2M]	
2. a) Evaluate the line integral $\int (y - x - 3x^2 i) dz$ where c consists of the line segments from		
z=0 to $z=i$ and the other from $z=i$ to $z=i+1$.	[5M]	
b) Evaluate $\int_{0}^{1+3i} (x^2 - iy) dz$ along the path $y = x$.	[5M]	
3. Verify Cauchy's theorem for the function $f(z)=3z^2+iz-4$ if c is the square with vertices at $1\pm i$ and $-1\pm i$.	[10M]	
4. a) Evaluate using Cauchy's integral formula $\int_{c} \frac{\sin^{6} z}{\left(z - \frac{\pi}{2}\right)^{3}} dz$ around the circle $c : z = 1$.	[5M]	
b) Evaluate $\int_{c} \frac{\log dz}{(z-1)^3}$ where $c: z-1 = \frac{1}{2}$ using Cauchy's integral formula	[5M]	
5. a) Expand $f(z) = \sin z$ in Taylor's series about $z = \frac{\pi}{4}$	[5M]	
b) Expand $f(z) = \log z$ in Taylor's series about $z = 1$	[5M]	
6. a) Find the Laurent series expansion of the function $f(z) = \frac{z^2 - 6z - 1}{(z - 1)(z - 3)(z + 2)}$ in the region		
3 < z+2 < 5 . [5M]		
b) Find the Laurent series of the function $f(z) = \frac{z}{(z+1)(z+2)}$ about $z = -2$.	[5M]	
7. a) Determine the poles of the function $f(z) = \frac{z^2}{(z-1)^2(z+2)}$ and the residues at each pole	[5M]	
b) Find the residue of the function $f(z) = \frac{1}{(z^2 + 4)^2}$ where c is $ z - i = 2$	[5M]	
8. a) Evaluate $\int_c \frac{dz}{z^3(z+4)}$ where c is $ z = 2$.	[5M]	
b) Determine the poles and residues of <i>tanhz</i> .	[5M]	
9. Evaluate $\int_{0}^{2\pi} \frac{1}{a+b\cos\theta} d\theta =, \frac{\pi}{\sqrt{a^2-b^2}}, a > b > 0$	[10M]	
10. Show that $\int_0^{2\pi} \frac{d\theta}{1+a^2-2a\cos\theta} = \frac{2\pi}{1-a^2}$, $0 < a < 1$.	[10M]	

MATHEMATICS-II